VOLUME 11 - ISSUE 2 (July 2018) - page 32

© Benaki Phytopathological Institute
Al-Doude
et al.
76
Alvarez, M.E. 2000.
Salicylic acid in the machinery
of hypersensitive cell death and disease resis-
tance.
Plant Molecular Biology,
44: 429-442.
Arabi, M.I.E., Al-safadi, B. and Charbaji, T. 2003.
Pathogenic Variation among Isolates of
Pyreno-
phora teres
the Causal Agent of Barley Net
Blotch.
Journal of Phytopathology,
151: 376–382.
Bindschedler, V.L., Métraux, J.P. and Schweizer, P.
1998. Salicylic acid accumulation in barley is
pathogen specific but not required for defense-
gene activation.
Molecular Plant-Microbe Inter-
actions,
11: 702–705.
Bishop, J.G, Dean, A.M. and Mitchell-Olds, T. 2002.
Rapid evolution in plant chitinases: molecular
targets of selection in plant-pathogen coevolu-
tion.
Proceedings of the National Academy of Sci-
ences of the United States of America,
97: 5322–
5327.
Bogacki, P., Oldach, K. H., and Williams, K.J. 2008.
Expression profiling and mapping of defense
response genes associated with the barley–
Pyrenophora teres
incompatible interaction.
Mo-
lecular Plant Pathology,
9: 645–660.
Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen,
K.K., Rasmussen, J.,
et al.
1993 Plant chitinases
.
The Plant Journal,
3: 31–40.
Dangl, J.L. and Jones, J.D.G. 2001. Plant pathogens
and integrated defense responses to infection.
Nature,
411: 826–833.
Derveaux, S., Vandesompele, J. and Hellemans, J.,
2010. How to do successful gene expression
analysis using real-time PCR.
Methods,
50: 227–
230.
Dong, X.N., 2004. NPR1 all things considered.
Cur-
rent Opinion in Plant Biology,
7: 547–552.
Häffner, E., Karlovsky, P., Splivallo, R., Traczewska,
A. and Diederichsen, E. 2014. ERECTA, salicylic
acid, abscisic acid, and jasmonic acid modulate
quantitative disease resistance of
Arabidopsis
thaliana
to
Verticillium longisporum. BMC Plant
Biology,
14: 71-85.
Kralik, P. and Ricchi, M. 2017. A Basic Guide to Real
Time PCR in Microbial Diagnostics: Definitions,
Parameters, and Everything
.
Frontiers in Micro-
biol
ogy, 8: 108.
Livak, K.J. and Schmittgen, T.D. 2001. Analysis of
relative gene expression data using real-time
quantitative PCR and the 2(-Delta Delta C(T))
Method.
Methods,
25: 402-408.
Liu, Z., Ellwood, S.R., Oliver, R.P. and Friesen, T.L.,
2011.
Pyrenophora teres
profile of an increasing-
ly damaging barley pathogen
. Molecular Plant
Pathology,
12: 1–19.
Opassiri, R., Maneesan, J., Akiyama, T., Pomthong,
S., Jin B., Kimura, A. and Ketudat Cairns, J.R.
2010. Rice Os4BGlu12 is a wound-induced
β-glucosidase that hydrolyzes cell wall-β-
glucan-derived oligosaccharides and glyco-
sides.
Plant Science,
179: 273–278.
Simmons, C.R., 1994. The physiology and molecular
biology of plant 1,3-P-o-glucanases and 1,3;1,4-
P-o-glucanases.
Critical Review in Plant Sciences,
13: 325-387
Trapp
, M.A.,
De Souza
, G.D.,
Filho
, E.R.,
Boland
, W.
and
Mithöfe
r, A. 2014. Validated method for
phytohormone quantification in plants.
Fron-
tiers in Plant Science,
5: 417.
Trusov, Y., Sewelam, N., Rookes, J.E., Kunkel, M.,
Nowak, E.,
Schenk, P.M. and Botella, J.R. 2009.
Heterotrimeric G proteins-mediated resistance
to necrotrophic pathogens includes mecha-
nisms independent of salicylic acid-, jasmonic
acid/ethylene- and abscisic acid-mediated de-
fense signaling.
The Plant Journal,
58: 69–81.
Vásquez
, A.H.,
Salinas
, P. and
Holuigue
, L. 2015. Sali-
cylic acid and reactive oxygen species interplay
in the transcriptional control of defense genes
expression.
Frontiers in Plant Science,
6: 171.
Wang, X., Mace, E.S., Platz, G.J., Hunt, C.H., Hickey,
L.T., Franckowiak, J.D. and Jordan, D.R. 2015.
Spot form of net blotch resistance in barley is
under complex genetic control.
Theoretical and
Applied Genetics,
108: 1064–1070.
Wessels, J.G.H. 1994. Developmental regulation of
fungal cell-wall formation.
Annual Review of
Phytopathology,
32: 413–437.
Zwart
, L.,
Berger
, D.K.,
Moleleki
, L.N.,
van der Merwe
,
N.A.,
Myburg
, A.A. and
Naido
o, S. 2017. Evidence
for salicylic acid signalling and histological
changes in the defence response of
Eucalyptus
grandis
to
Chrysoporthe austroafricana. Scientific
Reports,
7:45402. doi:10.1038/srep45402.
Received: 17 May 2018; Accepted: 9 July 2018
1...,22,23,24,25,26,27,28,29,30,31 33,34,35,36,37,38,39
Powered by FlippingBook